About me
I am an associate professor and researcher at the Department of Computer Science, Applied Mathematics and Statistics of the University of Girona. I am interested in machine learning problems in which data uncertainty/missingness is a determining characteristic, such as weakly supervised learning. I also study probabilistic graphical models for probabilistic inference and machine learning. Many of my works aim to learn probabilistic graphical models, commonly Bayesian networks, from weakly labeled data. I have applied these developments to problems from different domains, such as biomedical, environmental, and educational domains.
Publications
-
Jul2024
Modeling river flow for flood forecasting: A case study on the Ter river
F. Serrano-López, S. Ger-Roca, M. Salamó, J. Hernández-González
In Applied Computing and Geosciences in press · Supplementary material
-
Apr2024
Fairness and bias correction in machine learning for depression prediction across four study populations
V.N. Dang, A. Cascarano, R.H. Mulder, C. Cecil, M.A. Zuluaga, J. Hernández-González, K. Lekadir
In Scientific Reports 14: 7848
-
Dec2023
On the Supervision of Peer Assessment Tasks: An Efficient Instructor Guidance Technique
J. Hernández-González, P.J. Herrera
In IEEE Transactions on Learning Technologies 16(6): 926-939 · Supplementary material
-
Dec2023
Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The POSTCARDS Study
J. Villar, J.M. González-Martín, J. Hernández-González,
et al. In Critical Care Medicine 51(12): 1638-1649
-
Aug2023
Machine and deep learning for longitudinal biomedical data: a review of methods and applications
A. Cascarano, J. Mur-Petit, J. Hernández-González, M. Camacho, N.T. Eadie, P. Gkontra, M. Chadeau-Hyam, J. Vitria, K. Lekadir
In Artificial Intelligence Review 56: 1711-1771
-
Jan2023
On the use of the descriptive variable for enhancing the aggregation of crowdsourced labels
I. Beñaran-Muñoz, J. Hernández-González, A. Pérez
In Knowledge and Information Systems 65: 241-260
-
Oct2022
Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models
J. Hernández-González, O. Valls, A. Torres-Martín, J. Cerquides
In Computers in Biology and Medicine 150: 106160 · Supplementary material
-
Sep2022
Machine learning from crowds using candidate set-based labelling
I. Beñaran-Muñoz, J. Hernández-González, A. Pérez
In IEEE Intelligent Systems 37(6): 57-68
-
Aug2022
On the relative value of weak information of supervision for learning generative models: An empirical study
J. Hernández-González, A. Pérez
In International Journal of Approximate Reasoning 150: 258-272 · Supplementary material
-
Oct2021
Validation on Real Data of an Extended Embryo-Uterine Probabilistic Graphical Model for Embryo Selection
A. Torres-Martín, J. Hernández-González, J. Cerquides
In Proceedings of the 23rd International Conference of the Catalan Association for Artificial Intelligence (CCIA)
-
May2021
A Conceptual Probabilistic Framework for Annotation Aggregation of Citizen Science Data
J. Cerquides, M.O. Mulayim, J. Hernández-González, A.R. Shankar, J.L. Fernández-Márquez
In Mathematics 9(8): 875
-
Dec2020
A Robust Solution to Variational Importance Sampling of Minimum Variance
J. Hernández-González, J. Cerquides
In Entropy 22(12): 1405
-
Oct2019
Variational importance sampling: initial findings
J. Hernández-González, J. Capdevila, J. Cerquides
In Proceedings of the 22nd International Conference of the Catalan Association for Artificial Intelligence (CCIA)
-
Apr2019
A framework for evaluation in learning from label proportions
J. Hernández-González
In Progress in Artificial Intelligence 8 (3): 359-373 · Supplementary material
-
Apr2019
Beach litter forecasting on the SE coast of the Bay of Biscay: A bayesian networks approach
I. Granado, O.C. Basurko, A. Rubio, L. Ferrer, J. Hernández-González, I. Epelde, J.A. Fernandes
In Continental Shelf Research 180: 14-23
-
Jan2019
Aggregated outputs by linear models: An application on marine litter beaching prediction
J. Hernández-González, I. Inza, I. Granado, O.C. Basurko, J.A. Fernandes, J.A. Lozano
In Information Sciences 481: 381-393 · Supplementary material
-
Oct2018
Evaluation in learning from label proportions: an approximation to the precision-recall curve
J. Hernández-González
In Proceedings of the 18th Conference of the Spanish Association for Artificial Intelligence (CAEPIA) · Supplementary material
-
Oct2018
Crowd learning with candidate labeling: an EM-based solution
I. Beñaran-Muñoz, J. Hernández-González, A. Párez
In Proceedings of the 18th Conference of the Spanish Association for Artificial Intelligence (CAEPIA)
-
Jun2018
A note on the behavior of majority voting in multi-class domains with biased annotators
J. Hernández-González, I. Inza, J.A. Lozano
In IEEE Transactions on Knowledge and Data Engineering 31(1): 195-200 · Supplementary material
-
Jan2018
Two datasets of defect reports labeled by a crowd of annotators of unknown reliability
J. Hernández-González, D. Rodriguez, I. Inza, R. Harrison, J.A. Lozano
In Data in Brief 18: 840-845
-
Jan2018
Learning to classify software defects from crowds: A novel approach
J. Hernández-González, D. Rodriguez, I. Inza, R. Harrison, J.A. Lozano
In Applied Soft Computing Journal 62: 579-591 · Supplementary material
-
Aug2017
Merging knowledge bases in different languages
J. Hernández-González, Estevam R. Hruschka Jr., Tom M. Mitchell
In Proceedings of the 11th TextGraphs Workshop at ACL'17
-
Feb2017
Learning from proportions of positive and unlabeled examples
J. Hernández-González, I. Inza, J.A. Lozano
International Journal of Intelligent Systems 32: 109--133
-
Sep2016
Whatever you know, just tell me something: Crowd learning with free supervision
J. Hernández-González, I. Inza, J.A. Lozano
In Proceedings of the VIII Symposium of Data Mining Theory and Applications (TAMIDA)
-
May2016
Fitting the data from embryo implantation prediction: learning from label proportions
J. Hernández-González, I. Inza, L. Crisol-Ortiz, M.A. Guembe, M.J. Iñarra, J.A. Lozano
Statistical Methods in Medical Research 27(4): 1056-1066, 2018 · Supplementary material
-
Jan2016
Weak supervision and other non-standard classification problems: a taxonomy
J. Hernández-González, I. Inza, J.A. Lozano
Pattern Recognition Letters 69: 49-55
-
Nov2015
A novel weakly supervised problem: Learning from positive-unlabeled proportions
J. Hernández-González, I. Inza, J.A. Lozano
In Proceedings of the 16th Conference of the Spanish Association for Artificial Intelligence (CAEPIA)
-
Jan2015
Multidimensional learning from crowds: usefulness and application of expertise detection
J. Hernández-González, I. Inza, J.A. Lozano
International Journal of Intelligent Systems 30(3): 326-354
-
Dec2013
Learning Bayesian network classifiers from label proportions
J. Hernández-González, I. Inza, J.A. Lozano
Pattern Recognition 46(12): 3425-3440 · Supplementary material
-
Sep2013
Learning from crowds in multi-dimensional classification domains
J. Hernández-González, I. Inza, J.A. Lozano
In Proceedings of the 15th Conference of the Spanish Association for Artificial Intelligence (CAEPIA)
-
Nov2011
Learning naive Bayes models for Multiple-Instance Learning with label proportions
J. Hernández-González, I. Inza
In Proceedings of the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA)
Special mentions
-
2018
Best PhD thesis award
University of the Basque Country
-
2016
Best idea award
Open Data Euskadi
-
2015
Best student paper award
16th Conference of the Spanish Association for Artificial Intelligence (CAEPIA)